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Summary The deoxygenation of carboxylic esters by 
reduction using potassium solubilised by 18-crown-6 in 
t-butylamine or lithium in ethylamine is shown to 
proceed via alkyl oxygen cleavage of the derived radial 
anion ; in non-nucleophilic media deoxygenation giving 
alkane and carboxylate anion is the major pathway. 

THE reduction of carboxylic esters by alkali metals is a 
classic organic transformation. Excess of sodium in 
ethanol provides two alcohols (Bouveault-Blanc) whereas 
molten sodium in refluxing toluene gives the acyloin. 

a; R1 = R2= AcO e; R1 = R2 = H 
b; R' = R2 = ButCO, f ;  R' = H, R2 = OH 
C ;  R' = OH, R2 = H g; R'= R 2 = O H  
d; R1 = R2 = R3C02 [see (2)] h; R1 = R3C02, R2 = H 

Recently the selective deoxygenation (Li, EtNH,;1 K, 
18-crown-6, ButNH, ;1 or Na, hexamethylphosphoric tri- 
amide, ButOH z, of hindered alkyl carboxylates giving 
alkanes was reported. We suggested that deoxygenation 

[(R'CO,R)-. + R'C0,- + R- + R- + R-HI was the pre- 
dominant pathway [hereinafter, pathway (a)]. Otherwise 
the alcohol was regenerated [(R'CO,R)-- -+ R'CO. + RO-] 
[hereinafter, pathway (b)]. Typically diesters ( l a  and lb)  
gave 5a-cholestan-3~-01 ( l c )  (60 and 79% yield, respectively) 
where the more hindered axial ( 6 p )  ester was selectively 
deoxygenated. 

Our recent results are consistent with the hypothesis that 
aliphatic or alicyclic esters normally react by path (a) 
provided that the medium is nucleophile-free. 

TABLE 1. Reduction of esters and carboxylic acids.8 

Substrate Products ( %  yield) 

1 (14 i le)  (45)B ( W  (271, (lg) (8)) (If) (6), 
(2b) (92) 

(24 (51) [via (2f)l, (2b) (lo), (2c) (9) 
2 (2b) 
3 (2b) 
4 (29) + (Ic) (Ic) (69)) (le) (151, (2b) (85) 
5 (2h) Me[CH211,0H (53),  Me[CH,I,,Me (41), 

(2b) (90) 
6 ( 3 4  

7 (3b) 

No reaction; 87 % (2b) recovered 

n-C,H,,CH(X)CH,Y X=Y=OAc (67); 

n-C,H,,CH(X)CH,Y X=Y=OAc (35) ; 

n-C,H,,CH=CH, (5)  

X=H,  Y=OAc+X=OAc, Y=H (5 )  

X=H,  Y=OAC (26); X=OAc, Y = H  (8); 

a Reactions 1, 2, and 4-7 were carried out using potassium 
and 18-crown-6 in t-butylamine a t  room temperature and reaction 
(3) with lithium and ethylamine at 17 "C. The crude products 
from reactions 6 and 7 were acetylated prior to separation. 

Adamantane-l-carboxylic esters of sterols were chosen 
for study since these permit ready identification of the 
fragments derived from both acyl and alkyl residues on 
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reduction. Adamantanecarboxylate esterst [prepared 
using KH, 18-crown-6, and (2a)] and cyclic carbonates (3a 
and b) were reduced by their addition in tetrahydrofuran 
(THF) to potassium and 18-crown-6 in t-butylamine. The 
reduction was complete when the blue colour was restored ; 
quenching and chromatography gave the products shown in 
Tables 1 and 2. In all cases reduction of the ester (lh) 
gave 5a-cholestane (le) and acid (2b) with the latter 

a; X = COCl e; X = C H O -  - 
b; X = C02H 

d; X = CONHEt h; X = CO,[CH,],Me 

f ;  X = CH(-0)O or CH(-O)kEt 
C; X = CH20H g; X = C02Et 

substantially predominating. The possibility that this 
difference resulted from competitive hydrolysis by adven- 
titious water was unlikely since rigorous drying was used 
and in entry 5, Table 2, iodomethane was added before the 
ester to scavenge any water. The ratio of (le) : (2b) was 

TABLE 2. Reduction of the ester (1h)a 

Amount/mmol of 
Ester (lh), metalb, ,.- 

18-crown-6 (le) 
1 1.04, 38, 11 43 
2 0.84, (31 + 18), 32 

43 
(6 + 4) 

3 3-03, 13,4 
4 1-03, 14.4.5 45 
5 1.20, 28, 7 30 
6 1.09, 36, 6 27 
7 1.04, 36, 6 15 

37 84 0 - 
44 93 7 - 
57 92 0 - 
66 77 5 - 
81 71 0 - 

8 1.17, 29,O 1 93 0 69 0 
9 1.15, 22, 0 7 85 4 4 92 

10 1-17, 272, 0 4 94 4 65 0 
11 1.03, 65, 0 5 92 2 29 51 
12 0.45, 100, 0 0 58 0 66 0 

a Reactions were carried out a t  46 (1,2), 20 (3-5), 17 
(9-ll), -45 (6), -53 (7), or -73 "C (8), in t-butylamine 
and THF (1-3, 6, 7), t-butylamine with potassium 
added last (4), 1,2-dimethoxyethane and iodomethane (5), 
ethylamine and THF (8, 9), ethylamine (LO), or ethylamine 
THF, and t-butyl acetate (11). In reaction 2 extra 
crown and potassium were added after the ester. Reac- 
tion 12 was carried out under standard Bouveault- 
Blanc conditions. b Reactions 1-7, metal = K; 8-11, 
Li. and 12, Na. 

not increased. The yields of acid (2b) and alkane (le) 
were decreased at  lower temperature. Deoxygenation was 
a minor pathway (owing to competitive deacylation) on 
lithium-ethylamine reduction giving (lc) and (2d). In the 
presence of excess electrons or a t  low temperature both 
transacylation [giving (2d)l and radical anion fragmentation 
[giving (1 e)] were suppressed and the two-electron Bou- 
veault-Blanc products (lc) and (2c) formed. Entry 4, 
Table 1 shows that ester deacylation by an alkoxide com- 
peted with reduction. In entry 7, Table 1, predominance 
of the primary acetate was consistent with deoxygenation 
v ia  the radical anion, not the dianion. 

( 34 

a; X = O  
b; X = S  

18-Crown-6 was found to be fragmented on reaction with 
potassium in t-butylamine. When the blue colour faded 
acidification followed by acylation with l-naphthoyl 
chloride gave a complex mixture. Chromatography gave 
products including N-t-butyl- l-naphthamide and the oily 
esters (423, b, and c) characterised by spectral data and high 

CO&H&-O-[CHd 2 OR 
I 

(4) 

a; R = H  
b; R = CH,CH,OEt 
C; R = (CH2CH20),Et 

resolution mass spectroscopy. Clearly, during ester reduc- 
tion complete deoxygenation was prevented by competitive 
deacylation by crown fragments. The so-formed acylated 
fragments were subsequently reduced [pathway (a)] giving 
the carboxylate anion. Thus, in the absence of nucleo- 
philes [pathway (a)] predominated. The selective deoxy- 
genation of hindered esters followed from suppression of 
competitive deacylation.3 
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7 All new compounds were fully characterised by microanalysis and spectral data. 
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